Windows驱动_WFP之四WFP代码基本流程的剖析

更新时间:2018-10-10 18:05:38 点击次数:2292次

总说程序员是孤独的,因为,大部分的时间都在和机器打交道。大部分的时间都在自言自语。我的内心需要足够的强大。这种强大时建立的自信的基础上的。而自信又是建立在实力基础上的。实力又是建立在积累的基础上。积累又是建立在时间的基础上。所以归根结底,就是,需要花费更多的时间。第二,需要有足够的兴趣爱好。这两点对于现在的我来说,都有。既然,自己选择了这条路,就应该义无反顾的走下去,坚持的走下去。孤独,我不怕,困难,我也不怕,永远向上的动力,爱好,对知识的渴望,支持者我。相信自己,相信明天。


今天实际看一下,WFP的Callout驱动的代码。先从DriverEntry开始:


1,在DriverEntry需要创建驱动对象和设备对象,

1.1  由于不是PNP设备,需要设置创建驱动对象的标志为config.DriverInitFlags |= WdfDriverInitNonPnpDriver.
1.2  调用WdfDriverCreate创建驱动对象。
1.3  调用WdfControlDeviceInitAllocate通过驱动对象创建 WDFDEVICE_INIT结构体。
1.4  调用WdfDeviceInitSetDeviceType设置设备类型为FILE_DEVICE_NETWORK.
1.5  调用WdfDeviceInitSetCharacteristics设置设备的特性为FILE_DEVICE_SECURE_OPEN和FILE_AUTOGENERATED_DEVICE_NAME.
1.6  调用WdfDeviceCreate创建设备对象。
1.7  调用WdfControlFinishInitializing设置设备的初始化状态为完成。
1.8  调用FwpsInjectionHandleCreate创建一个检测的句柄。并设置在哪里完成检查。通过在转发层,网络层,流层,传输层。
1.9  调用WdfDeviceWdmGetDeviceObject将框架设备对象转换为设备对象的指针。
1.10 调用FwpmEngineOpen打开一个和过滤引擎的会话,这个函数会返回一个过滤引擎的句柄。
1.11 调用FwpmTransactionBegin在当前的会话下,开始一个明确的传输。
1.12 调用FwpmSubLayerAdd函数玩系统中增加一个子层。

DWORD WINAPI FwpmSubLayerAdd0(
_In_      HANDLE engineHandle,
_In_      const FWPM_SUBLAYER0 *subLayer,
_In_opt_  PSECURITY_DESCRIPTOR sd
);


这里我们主要来看第二个参数,FWPM_SUBLAYER0这个结构体。

typedef struct FWPM_SUBLAYER0_ {
GUID               subLayerKey;
FWPM_DISPLAY_DATA0 displayData;
UINT16             flags;
GUID               *providerKey;
FWP_BYTE_BLOB      providerData;
UINT16             weight;
} FWPM_SUBLAYER0;

这里,我们主要看第一个GUID,后面的需要在例子后分析。这个可以定义的GUID.

DEFINE_GUID(
DD_PROXY_SUBLAYER,
0x0104fd7e,
0xc825,
0x414e,
0x94, 0xc9, 0xf0, 0xd5, 0x25, 0xbb, 0xc1, 0x69
);

DDProxySubLayer.subLayerKey = DD_PROXY_SUBLAYER;
DDProxySubLayer.displayData.name = L"Datagram-Data Proxy Sub-Layer";
DDProxySubLayer.displayData.description =
L"Sub-Layer for use by Datagram-Data Proxy callouts";
DDProxySubLayer.flags = 0;
DDProxySubLayer.weight = FWP_EMPTY; // auto-weight.;

1.13  调用FwpsCalloutRegister注册一个callout:
NTSTATUS NTAPI FwpsCalloutRegister0(
_Inout_    void *deviceObject,
_In_       const FWPS_CALLOUT0 *callout,
_Out_opt_  UINT32 *calloutId
);
这里主要是第二个参数的设置:

typedef struct FWPS_CALLOUT0_ {
GUID                                 calloutKey;
UINT32                              flags;
FWPS_CALLOUT_CLASSIFY_FN0           classifyFn;
FWPS_CALLOUT_NOTIFY_FN0             notifyFn;
FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN0 flowDeleteFn;
} FWPS_CALLOUT0;

这里的calloutKey是一个GUID值,我们可以定义。classifyFn为驱动分类的函数入口。notifyFn为通知消息的函数入口。flowDeleteFn为流程删除的函数入口。

1.14  调用FwpmCalloutAdd,向过滤引擎增加一个callout.

NTSTATUS NTAPI FwpmCalloutAdd0(
_In_       HANDLE engineHandle,
_In_       const FWPM_CALLOUT0 *callout,
_In_opt_   PSECURITY_DESCRIPTOR sd,
_Out_opt_  UINT32 *id
);

这里还是看第二个参数,FWPM_CALLOUT0.

typedef struct FWPM_CALLOUT0_ {
GUID               calloutKey;
FWPM_DISPLAY_DATA0 displayData;
UINT32             flags;
GUID               *providerKey;
FWP_BYTE_BLOB      providerData;
GUID               applicableLayer;
UINT32             calloutId;
} FWPM_CALLOUT0;

所以我们看到,这里我们有两个CALLOUT了,一个是FWPS_CALLOUT0,一个是FWPM_CALLOUT0,FWPS_CALLOUT0是给驱动用的,所以这里将其CALLOUT跟设备对象进行关联,但是后面还有个FWPM_CALLOUT0,这个就是跟过滤引擎进行交互的。再看其实这两个CALLOUT的GUID值是一样的,所以这样就进行了关联。两个CALLOUT相互关联,又相互独立,FWPM_CALLOUT0,负责和过滤引擎相关的操作。FWPS_CALLOUT0负责和驱动相关本身的操作。
这样,从驱动本身的驱动对象,设备对象和过滤引擎中的过滤层和CALLOUT进行联系上了。

1.15  调用FwpmFilterAdd增加一个过滤对象到系统中。

DWORD WINAPI FwpmFilterAdd0(
_In_       HANDLE engineHandle,
_In_       const FWPM_FILTER0 *filter,
_In_opt_   SECURITY_DESCRIPTOR sd,
_Out_opt_  UINT64 *id
);

这里还是第二个参数,const FWPM_FILTER0 *filter,非常复杂的结构,这个是精髓,必须好好看。

typedef struct FWPM_FILTER0_ {
GUID                   filterKey;
FWPM_DISPLAY_DATA0     displayData;
UINT32                 flags;
GUID                   *providerKey;
FWP_BYTE_BLOB          providerData;
GUID                   layerKey;
GUID                   subLayerKey;
FWP_VALUE0             weight;
UINT32                 numFilterConditions;
FWPM_FILTER_CONDITION0 *filterCondition;
FWPM_ACTION0           action;
union {
UINT64 rawContext;
GUID   providerContextKey;
};
GUID                   *reserved;
UINT64                 filterId;
FWP_VALUE0             effectiveWeight;
} FWPM_FILTER0;

我们先把,结构体中包含的结构,进行展开。

typedef struct FWPM_DISPLAY_DATA0_ {
wchar_t *name;
wchar_t *description;
} FWPM_DISPLAY_DATA0;

typedef struct FWP_BYTE_BLOB_ {
UINT32 size;
UINT8  *data;
} FWP_BYTE_BLOB;

关于providerKey代表的是WFP内部定义的一些GUID.

typedef struct FWP_VALUE0_ {

FWP_DATA_TYPE type;
union {
;  // case(FWP_EMPTY)
UINT8                 uint8;
UINT16                uint16;
UINT32                uint32;
UINT64                *uint64;
INT8                  int8;
INT16                 int16;
INT32                 int32;
INT64                 *int64;
float                 float32;
double                *double64;
FWP_BYTE_ARRAY16      *byteArray16;
FWP_BYTE_BLOB         *byteBlob;
SID                   *sid;
FWP_BYTE_BLOB         *sd;
FWP_TOKEN_INFORMATION *tokenInformation;
FWP_BYTE_BLOB         *tokenAccessInformation;
LPWSTR                unicodeString;
FWP_BYTE_ARRAY6       *byteArray6;
};
} FWP_VALUE0;

这里,我的理解是,这个值代表代表一个过滤的一个比重,这个跟你在哪一层过滤都有关系。

下面看一下,最最重要的一个结构体,过滤的条件。当这所有的条件的满足的情况下,定义的过滤动作才开始。

typedef struct FWPM_FILTER_CONDITION0_ {
GUID                fieldKey;
FWP_MATCH_TYPE      matchType;
FWP_CONDITION_VALUE conditionValue;
} FWPM_FILTER_CONDITION0;

通常这个fieldKey域,微软有明确的定义。在每一个过滤层次上,都有不一样的过滤条件。可以看http://msdn.microsoft.com/en-us/library/windows/hardware/ff549944(v=vs.85).aspx


typedef enum FWP_MATCH_TYPE_ {
FWP_MATCH_EQUAL,
FWP_MATCH_GREATER,
FWP_MATCH_LESS,
FWP_MATCH_GREATER_OR_EQUAL,
FWP_MATCH_LESS_OR_EQUAL,
FWP_MATCH_RANGE,
FWP_MATCH_FLAGS_ALL_SET,
FWP_MATCH_FLAGS_ANY_SET,
FWP_MATCH_FLAGS_NONE_SET,
FWP_MATCH_EQUAL_CASE_INSENSITIVE,
FWP_MATCH_NOT_EQUAL,
FWP_MATCH_TYPE_MAX
} FWP_MATCH_TYPE;

typedef struct FWP_CONDITION_VALUE0_ {
FWP_DATA_TYPE type;
union {
UINT8                 uint8;
UINT16                uint16;
UINT32                uint32;
UINT64                *uint64;
INT8                   int8;
INT16                 int16;
INT32                 int32;
INT64                 *int64;
float                 float32;
double                *double64;
FWP_BYTE_ARRAY16      *byteArray16;
FWP_BYTE_BLOB         *byteBlob;
SID                   *sid;
FWP_BYTE_BLOB         *sd;
FWP_TOKEN_INFORMATION *tokenInformation;
FWP_BYTE_BLOB         *tokenAccessInformation;
LPWSTR                unicodeString;
FWP_BYTE_ARRAY6       *byteArray6;
FWP_V4_ADDR_AND_MASK  *v4AddrMask;
FWP_V6_ADDR_AND_MASK  *v6AddrMask;
FWP_RANGE0            *rangeValue;
};
} FWP_CONDITION_VALUE0;

这个可能要多看下MSDN中的设置,因为跟微软玩,必须都符合它的要求。

下面再看下,过滤动作的这个结构体。

typedef struct FWPM_ACTION0_ {
FWP_ACTION_TYPE type;
union {
GUID filterType;
GUID calloutKey;
};
} FWPM_ACTION0;

这里要提一下的就是这个calloutKey,这个值正好跟之前calloutKey相吻合,主要我们向设备对象注册的callout,向过滤引擎注册的callout,以及和过滤的callout都指向同一个GUID值。

下面就是我们来看具体的CALLOUT函数的执行了,当满足这些条件后,CALLOUT被过滤引擎调用。

我们具体来看一下这个具体的CALLOUT函数:

void NTAPI classifyFn0(
_In_     const FWPS_INCOMING_VALUES0 *inFixedValues,
_In_     const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
_Inout_  void *layerData,
_In_     const FWPS_FILTER0 *filter,
_In_     UINT64 flowContext,
_Out_    FWPS_CLASSIFY_OUT0 *classifyOut
)

typedef struct FWPS_INCOMING_VALUES0_ {
UINT16               layerId;
UINT32               valueCount;
FWPS_INCOMING_VALUE0 *incomingValue;
} FWPS_INCOMING_VALUES0;

这个layerId就是指的是过滤层的实时标识ID.可以参考微软的http://msdn.microsoft.com/en-us/library/windows/hardware/ff570731(v=vs.85).aspx

具体的数据域。
typedef struct FWPS_INCOMING_VALUE0_ {
FWP_VALUE0 value;
} FWPS_INCOMING_VALUE0;

这个值一看就知道,就是代表那些固定的值。比如一些IP地址,PORT等等。

再看:

typedef struct FWPS_INCOMING_METADATA_VALUES0_ {
UINT32                          currentMetadataValues;
UINT32                          flags;
UINT64                          reserved;
FWPS_DISCARD_METADATA0          discardMetadata;
UINT64                          flowHandle;
UINT32                          ipHeaderSize;
UINT32                          transportHeaderSize;
FWP_BYTE_BLOB                   *processPath;
UINT64                          token;
UINT64                          processId;
UINT32                          sourceInterfaceIndex;
UINT32                          destinationInterfaceIndex;
ULONG                           compartmentId;
FWPS_INBOUND_FRAGMENT_METADATA0 fragmentMetadata;
ULONG                           pathMtu;
HANDLE                          completionHandle;
UINT64                          transportEndpointHandle;
SCOPE_ID                        remoteScopeId;
WSACMSGHDR                      *controlData;
ULONG                           controlDataLength;
FWP_DIRECTION                   packetDirection;
#if (NTDDI_VERSION >= NTDDI_WIN6SP1)
PVOID                           headerIncludeHeader;
ULONG                           headerIncludeHeaderLength;
#if (NTDDI_VERSION >= NTDDI_WIN7)
IP_ADDRESS_PREFIX               destinationPrefix;
UINT16                          frameLength;
UINT64                          parentEndpointHandle;
UINT32                          icmpIdAndSequence;
DWORD                           localRedirectTargetPID;
SOCKADDR                        *originalDestination;
#if (NTDDI_VERSION >= NTDDI_WIN8)
HANDLE                          redirectRecords;
UINT32                          currentL2MetadataValues;
UINT32                          l2Flags;
UINT32                          ethernetMacHeaderSize;
UINT32                          wiFiOperationMode;
#if (NDIS_SUPPORT_NDIS630)
NDIS_SWITCH_PORT_ID             vSwitchSourcePortId;
NDIS_SWITCH_NIC_INDEX           vSwitchSourceNicIndex;
NDIS_SWITCH_PORT_ID             vSwitchDestinationPortId;
#else
UINT32                          padding0;
USHORT                          padding1;
UINT32                          padding2;
#endif
HANDLE                          vSwitchPacketContext;
UINT32                          l2ConnectionProfileIndex;
#endif
#endif
#endif
#if (NTDDI_VERSION >= NTDDI_WIN8)
PVOID                           subProcessTag;
UINT64                          Reserved1;
#endif
} FWPS_INCOMING_METADATA_VALUES0;

这个数据就是包含需要过滤的一些元数据的值。

我们再来看void *layerData,这个值,可能为NULL,取决于过滤条件和过滤层。

在Stream层,这个参数指向 FWPS_STREAM_CALLOUT_IO_PACKET0 结构,对于其他的层,这个参数指向NET_BUFFER_LIST,或者为NULL.

FWPS_FILTER0 *filter

这个结构体,我们之前有看过:

typedef struct FWPS_FILTER0_ {
UINT64                 filterId;
FWP_VALUE0             weight;
UINT16                 subLayerWeight;
UINT16                 flags;
UINT32                 numFilterConditions;
FWPS_FILTER_CONDITION0 *filterCondition;
FWPS_ACTION0           action;
UINT64                 context;
FWPM_PROVIDER_CONTEXT0 *providerContext;
} FWPS_FILTER0;

UINT64 flowContext,这个参数是和过滤数据相关联的上下文结构。

再来看,FWPS_CLASSIFY_OUT0 *classifyOut,这个结构体比较重要:

这个是返回给调用者的结构体。

struct FWPS_CLASSIFY_OUT0 {
FWP_ACTION_TYPE actionType;
UINT64          outContext;
UINT64          filterId;
UINT32          rights;
UINT32          flags;
UINT32          reserved;
};

可以参考http://msdn.microsoft.com/en-us/library/windows/hardware/ff551229(v=vs.85).aspx

我们再从前面看,在DriverEntry最后面,我们有起一个线程来进行对包的数据的检查,看是否需要修改,以及重新注入后发送。这个也必须根据其过滤条件有关。

我们看一个复杂的callout的ClassifyFn函数的具体实现。

void
DDProxyClassify(
_In_ const FWPS_INCOMING_VALUES* inFixedValues,
_In_ const FWPS_INCOMING_METADATA_VALUES* inMetaValues,
_Inout_opt_ void* layerData,
_In_ const FWPS_FILTER* filter,
_In_ UINT64 flowContext,
_Inout_ FWPS_CLASSIFY_OUT* classifyOut
)

#endif /// (NTDDI_VERSION >= NTDDI_WIN7)
/* ++

This is the classifyFn function of the datagram-data callout. It
allocates a packet structure to store the classify and meta data and
it references the net buffer list for out-of-band modification and
re-injection. The packet structure will be queued to the global packet
queue. The worker thread will then be signaled, if idle, to process
the queue.

-- */
{
DD_PROXY_PENDED_PACKET* packet = NULL;
DD_PROXY_FLOW_CONTEXT* flowContextLocal = (DD_PROXY_FLOW_CONTEXT*)(DWORD_PTR)flowContext;

FWPS_PACKET_INJECTION_STATE packetState;
KLOCK_QUEUE_HANDLE packetQueueLockHandle;
BOOLEAN signalWorkerThread;

#if(NTDDI_VERSION >= NTDDI_WIN7)
UNREFERENCED_PARAMETER(classifyContext);
#endif
UNREFERENCED_PARAMETER(filter);

_Analysis_assume_(layerData != NULL);

//
// We don't have the necessary right to alter the packet.
// 首先检查,我们是否有权利去修改这个包。
if ((classifyOut->rights & FWPS_RIGHT_ACTION_WRITE) == 0)
{
goto Exit;
}

//
// We don't re-inspect packets that we've inspected earlier.
//
packetState = FwpsQueryPacketInjectionState(
gInjectionHandle,
layerData,
NULL
);

//如果这个包注入的状态是,之前已经被这个注入句柄注入过,就不用再处理了。
if ((packetState == FWPS_PACKET_INJECTED_BY_SELF) ||
(packetState == FWPS_PACKET_PREVIOUSLY_INJECTED_BY_SELF))
{
classifyOut->actionType = FWP_ACTION_PERMIT;
if (filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT)
{
classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
}

goto Exit;
}

//分配一个和过滤条件相匹配的空间。
packet = ExAllocatePoolWithTag(
NonPagedPool,
sizeof(DD_PROXY_PENDED_PACKET),
DD_PROXY_PENDED_PACKET_POOL_TAG
);
//分配失败,直接退出,等待下一次处理。
if (packet == NULL)
{
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
goto Exit;
}

RtlZeroMemory(packet, sizeof(DD_PROXY_PENDED_PACKET));

NT_ASSERT(flowContextLocal != NULL);

packet->belongingFlow = flowContextLocal;
DDProxyReferenceFlowContext(packet->belongingFlow);
//AF_INET代表的是TCP或UDP,通过固定数据中的数据与来传输方向。
if (flowContextLocal->addressFamily == AF_INET)
{
NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V4);
packet->direction =
inFixedValues->incomingValue[FWPS_FIELD_DATAGRAM_DATA_V4_DIRECTION].\
value.uint32;
}
else
{
NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V6);
packet->direction =
inFixedValues->incomingValue[FWPS_FIELD_DATAGRAM_DATA_V6_DIRECTION].\
value.uint32;
}
//将NET_BUFFER_LIST结构体的指针赋给packer->netBufferList.
packet->netBufferList = layerData;

//
// Reference the net buffer list to make it accessible outside of
// classifyFn.
//
//引用NET_BUFFER_LIST.
FwpsReferenceNetBufferList(packet->netBufferList, TRUE);

NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(inMetaValues,
FWPS_METADATA_FIELD_COMPARTMENT_ID));
packet->compartmentId = inMetaValues->compartmentId;

if (packet->direction == FWP_DIRECTION_OUTBOUND)
{
NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(
inMetaValues,
FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE));
packet->endpointHandle = inMetaValues->transportEndpointHandle;

if (flowContextLocal->addressFamily == AF_INET)
{
// See PREfast comments above.  Opaque pointer tricks PREfast.
#pragma prefast ( suppress: 28193, "We are NOT ignoring this return value" )
packet->ipv4RemoteAddr =
RtlUlongByteSwap( /* host-order -> network-order conversion */
inFixedValues->incomingValue\
[FWPS_FIELD_DATAGRAM_DATA_V4_IP_REMOTE_ADDRESS].value.uint32);
}
else
{
RtlCopyMemory(
(UINT8*)&packet->remoteAddr,
inFixedValues->incomingValue\
[FWPS_FIELD_DATAGRAM_DATA_V6_IP_REMOTE_ADDRESS].value.byteArray16,
sizeof(FWP_BYTE_ARRAY16)
);

}
packet->remoteScopeId = inMetaValues->remoteScopeId;

if (FWPS_IS_METADATA_FIELD_PRESENT(
inMetaValues,
FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA))
{
NT_ASSERT(inMetaValues->controlDataLength > 0);

packet->controlData = ExAllocatePoolWithTag(
NonPagedPool,
inMetaValues->controlDataLength,
DD_PROXY_CONTROL_DATA_POOL_TAG
);
if (packet->controlData == NULL)
{
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
goto Exit;
}

RtlCopyMemory(
packet->controlData,
inMetaValues->controlData,
inMetaValues->controlDataLength
);

packet->controlDataLength =  inMetaValues->controlDataLength;
}
}
else
{
NT_ASSERT(packet->direction == FWP_DIRECTION_INBOUND);

if (flowContextLocal->addressFamily == AF_INET)
{
NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V4);
packet->interfaceIndex =
inFixedValues->incomingValue\
[FWPS_FIELD_DATAGRAM_DATA_V4_INTERFACE_INDEX].value.uint32;
packet->subInterfaceIndex =
inFixedValues->incomingValue\
[FWPS_FIELD_DATAGRAM_DATA_V4_SUB_INTERFACE_INDEX].value.uint32;
}
else
{
NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V6);
packet->interfaceIndex =
inFixedValues->incomingValue\
[FWPS_FIELD_DATAGRAM_DATA_V6_INTERFACE_INDEX].value.uint32;
packet->subInterfaceIndex =
inFixedValues->incomingValue\
[FWPS_FIELD_DATAGRAM_DATA_V6_SUB_INTERFACE_INDEX].value.uint32;
}

NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(
inMetaValues,
FWPS_METADATA_FIELD_IP_HEADER_SIZE));
NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(
inMetaValues,
FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE));
packet->ipHeaderSize = inMetaValues->ipHeaderSize;
packet->transportHeaderSize = inMetaValues->transportHeaderSize;

packet->nblOffset =
NET_BUFFER_DATA_OFFSET(NET_BUFFER_LIST_FIRST_NB(packet->netBufferList));
}

KeAcquireInStackQueuedSpinLock(
&gPacketQueueLock,
&packetQueueLockHandle
);

if (!gDriverUnloading)
{
signalWorkerThread = IsListEmpty(&gPacketQueue);

InsertTailList(&gPacketQueue, &packet->listEntry);
packet = NULL; // ownership transferred

classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
classifyOut->flags |= FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
else
{
//
// Driver is being unloaded, permit any incoming packets.
//
signalWorkerThread = FALSE;

classifyOut->actionType = FWP_ACTION_PERMIT;
if (filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT)
{
classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
}
}

if (signalWorkerThread)
{
KeSetEvent(
&gPacketQueueEvent,
0,
FALSE
);
}

KeReleaseInStackQueuedSpinLock(&packetQueueLockHandle);

Exit:

if (packet != NULL)
{
DDProxyFreePendedPacket(packet, packet->controlData);
}

return;
}

这里是放在函数外注入修改,这里是通过线程来处理的,我们先看重新注入函数。

NTSTATUS
DDProxyCloneModifyReinjectInbound(
_In_ DD_PROXY_PENDED_PACKET* packet
)
/* ++

This function clones the inbound net buffer list and, if needed,
modifies the source port and/or source address and receive-injects
the clone back to the tcpip stack.

-- */
{
NTSTATUS status = STATUS_SUCCESS;

NET_BUFFER_LIST* clonedNetBufferList = NULL;
NET_BUFFER* netBuffer;
UDP_HEADER* udpHeader;
ULONG nblOffset;
NDIS_STATUS ndisStatus;

//
// For inbound net buffer list, we can assume it contains only one
// net buffer.
//
netBuffer = NET_BUFFER_LIST_FIRST_NB(packet->netBufferList);

nblOffset = NET_BUFFER_DATA_OFFSET(netBuffer);

//
// The TCP/IP stack could have retreated the net buffer list by the
// transportHeaderSize amount; detect the condition here to avoid
// retreating twice.
//
if (nblOffset != packet->nblOffset)
{
NT_ASSERT(packet->nblOffset - nblOffset == packet->transportHeaderSize);
packet->transportHeaderSize = 0;
}

//
// Adjust the net buffer list offset to the start of the IP header.
//
ndisStatus = NdisRetreatNetBufferDataStart(
netBuffer,
packet->ipHeaderSize + packet->transportHeaderSize,
0,
NULL
);
_Analysis_assume_(ndisStatus == NDIS_STATUS_SUCCESS);

//
// Note that the clone will inherit the original net buffer list's offset.
//

status = FwpsAllocateCloneNetBufferList(
packet->netBufferList,
NULL,
NULL,
0,
&clonedNetBufferList
);

//
// Undo the adjustment on the original net buffer list.
//

NdisAdvanceNetBufferDataStart(
netBuffer,
packet->ipHeaderSize + packet->transportHeaderSize,
FALSE,
NULL
);

if (!NT_SUCCESS(status))
{
goto Exit;
}

//
// Check to see if port modification is required.
//
if ((packet->belongingFlow->protocol == IPPROTO_UDP) &&
(packet->belongingFlow->toRemotePort != 0))
{
netBuffer = NET_BUFFER_LIST_FIRST_NB(clonedNetBufferList);

//
// Advance to the beginning of the transport header (i.e. UDP header).
//
NdisAdvanceNetBufferDataStart(
netBuffer,
packet->ipHeaderSize,
FALSE,
NULL
);

udpHeader = NdisGetDataBuffer(
netBuffer,
sizeof(UDP_HEADER),
NULL,
sizeof(UINT16),
0
);
NT_ASSERT(udpHeader != NULL); // We can assume UDP header in a net buffer
// is contiguous and 2-byte aligned.
_Analysis_assume_(udpHeader != NULL);

udpHeader->destPort =
packet->belongingFlow->toRemotePort;
// This is our new source port -- or
// the destination port of the original
// outbound traffic.
udpHeader->checksum = 0;

//
// Undo the advance. Net buffer list needs to be positioned at the
// beginning of IP header for address modification and/or receive-
// injection.
//
ndisStatus = NdisRetreatNetBufferDataStart(
netBuffer,
packet->ipHeaderSize,
0,
NULL
);
_Analysis_assume_(ndisStatus == NDIS_STATUS_SUCCESS);

}

if (packet->belongingFlow->toRemoteAddr != NULL)
{
status = FwpsConstructIpHeaderForTransportPacket(
clonedNetBufferList,
packet->ipHeaderSize,
packet->belongingFlow->addressFamily,
packet->belongingFlow->toRemoteAddr,
// This is our new source address --
// or the destination address of the
// original outbound traffic.
(UINT8*)&packet->belongingFlow->localAddr,
// This is the destination address of
// the clone -- or the source of the
// original outbound traffic.
packet->belongingFlow->protocol,
0,
NULL,
0,
0,
NULL,
0,
0
);

if (!NT_SUCCESS(status))
{
goto Exit;
}
}

status = FwpsInjectTransportReceiveAsync(
gInjectionHandle,
NULL,
NULL,
0,
packet->belongingFlow->addressFamily,
packet->compartmentId,
packet->interfaceIndex,
packet->subInterfaceIndex,
clonedNetBufferList,
DDProxyInjectComplete,
packet
);

if (!NT_SUCCESS(status))
{
goto Exit;
}

clonedNetBufferList = NULL; // ownership transferred to the
// completion function.

Exit:

if (clonedNetBufferList != NULL)
{
FwpsFreeCloneNetBufferList(clonedNetBufferList, 0);
}

return status;
}
写在最后,关于WFP,自己只是懂了点皮毛,这个需要非常好的网络相关的知识,而且需要对

微软的NDIS非常熟悉,虽然自己差不多将NDIS看了许多,但是还不够熟练。

而且,关于WFP中,微软定义了非常多了不好理解的数据结构和一些过滤层,

这应该是一个大工程,需要自己经常,反复揣摩。

本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责,本站只提供参考并不构成任何投资及应用建议。本站是一个个人学习交流的平台,网站上部分文章为转载,并不用于任何商业目的,我们已经尽可能的对作者和来源进行了通告,但是能力有限或疏忽,造成漏登,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

回到顶部
嘿,我来帮您!